资源类型

期刊论文 55

年份

2023 6

2022 2

2021 9

2020 3

2019 3

2018 2

2017 5

2016 1

2015 2

2013 2

2012 2

2011 1

2010 2

2009 1

2008 1

2007 2

2006 3

2005 1

2004 4

2002 2

展开 ︾

关键词

玻璃 3

大块金属玻璃 2

玻璃形成能力 2

玻璃钢 2

60 GHz;封装天线;共面波导馈电环形谐振器;玻璃集成无源器件;超表面天线;小型化天线 1

WiFi多频天线 1

介质谐振器天线 1

低成本化 1

全链条治理 1

制备工艺 1

加和原则 1

加权平均原则 1

动力学 1

化学键参数 1

单纤维复合 1

原子半径差比率 1

原子团簇 1

回收利用 1

固态非晶 1

展开 ︾

检索范围:

排序: 展示方式:

Recycled glass replacement as fine aggregate in self-compacting concrete

Yasser SHARIFI, Mahmoud HOUSHIAR, Behnam AGHEBATI

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 419-428 doi: 10.1007/s11709-013-0224-8

摘要: With increasing environmental pressure to reduce solid waste and to recycle as much as possible, the concrete industry has adopted a number of methods to achieve this goal by replacement of waste glass with concrete composition materials. Due to differences in mixture design, placement and consolidation techniques, the strength and durability of Self Compacting Concrete (SCC) may be different than those of conventional concrete. Therefore, replacement of waste glass with fine aggregate in SCC should deeply be investigated compared to conventional concretes. The aim of the present study is to investigate the effect of glass replacement with fine aggregate on the SCC properties. In present study, fine aggregate has been replaced with waste glass in six different weight ratios ranging from 0% to 50%. Fresh results indicate that the flow-ability characteristics have been increased as the waste glass incorporated to paste volume. Nevertheless, compressive, flexural and splitting strengths of concrete containing waste glass have been shown to decrease when the content of waste glass is increased. The strength reduction of concrete in different glass replacement ratios is not remarkable, thus it can be produced SCC with waste glass as fine aggregate in a standard manner.

关键词: Self Compacting Concrete (SCC)     recycle glass     fine aggregate     fresh and hardened properties    

Influence of entrainer recycle for batch heteroazeotropic distillation

Laszlo Hegely, Peter Lang

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 643-659 doi: 10.1007/s11705-018-1760-5

摘要:

Dehydration of isopropanol applying batch heteroazeotropic distillation with toluene as entrainer (E) is investigated. The composition of the feed is near to that of the isopropanol (A)-water (B) azeotrope. The effects of recycling the entrainer and the off-cut are studied by dynamic simulation with a professional flow-sheet simulator. Three consecutive batches (one production cycle) is studied. Both operational modes (Mode I: decantation after distillation and Mode II: decantation during distillation) are simulated. For Mode II, calculations are performed both for Strategy A (distillate from the aqueous (E-lean) phase only) and Strategy B (partial withdrawal of the organic (E-rich phase), as well). The E-rich phase, the final column hold-up and the off-cut (Mode II only) are recycled to the next batch. The influence of the following parameters are determined: quantity of entrainer, reflux ratios of the steps. The variations caused by the recycling in the 2nd and 3rd batches are also shown. The best results (lowest specific energy demand and highest recovery of A) are obtained by Mode II, Strategy A. Recycling increases the recovery, and drastically diminishes the entrainer consumption. However, it makes the production slower and decreases the quantity of fresh feed that can be processed.

关键词: batch distillation     heteroazeotropic distillation     operational policies     off-cut recycle     entrainer    

The impact of government incentives and penalties on willingness to recycle plastic waste: An evolutionary

Zhen Wang, Jiazhen Huo, Yongrui Duan

《环境科学与工程前沿(英文)》 2020年 第14卷 第2期 doi: 10.1007/s11783-019-1208-2

摘要: • Punishments increase the participation probability of collectors and recyclers. • Policy-sponsored incentives make collectors and recyclers to participate earlier. • Recyclers are more sensitive to government punishments than collectors. Because governments have introduced policies involving incentives and penalties to promote the recycling of plastic waste, it is important to understand the impact of such incentives and penalties on the willingness of stakeholders to participate. In this study, government is included as a player, alongside waste collectors and recyclers, in a tripartite evolutionary game model of plastic waste recycling. The study explores the evolutionary equilibrium and performs a simulation analysis to elucidate the effect of government incentives and penalties on the willingness of other players to participate in recycling. Three conclusions are drawn from this research. First, an increase in incentives or in penalties increases the probability that collectors and recyclers will participate in the recycling process. Second, policy support incentives encourage collectors and recyclers to participate in plastic waste recycling earlier than subsidy incentives do. Finally, recyclers are more sensitive than collectors to government-imposed penalties.

关键词: Plastic waste     Recycle     Reuse     Government incentives     Government penalties     Evolutionary game    

An investigation into the properties of ternary and binary cement pastes containing glass powder

Marcelo Frota BAZHUNI, Mahsa KAMALI, Ali GHAHREMANINEZHAD

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 741-750 doi: 10.1007/s11709-018-0511-5

摘要: The properties of binary and ternary cement pastes containing glass powder (GP) were examined. Hydration at early age was evaluated using semi-adiabatic calorimetry and at late ages using non-evaporable water content and thermogravimetric analysis. The transport characteristic was assessed by measuring electrical resistivity. The binary paste with slag showed the highest hydration activity compared to the binary pastes with GP and fly ash (FA). The results indicated that the pozzolanic behavior of the binary paste with GP was less than that of the binary pastes with slag or FA at late ages. An increase in the electrical resistivity and compressive strength of the binary paste with GP compared to other modified pastes at late ages was observed. It was shown that GP tends to increase the drying shrinkage of the pastes. Ternary pastes containing GP did not exhibit synergistic enhancements compared to the respective binary pastes.

关键词: cement paste     glass powder     pozzolanic reaction     supplementary cementitious material    

Precision glass molding: Toward an optimal fabrication of optical lenses

Liangchi ZHANG,Weidong LIU

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 3-17 doi: 10.1007/s11465-017-0408-3

摘要:

It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pa·s due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

关键词: precision glass molding     optical lens     constitutive modeling     optimization     manufacturing chain     Industry 4.0    

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 376-382 doi: 10.1007/s11709-010-0086-2

摘要: Pre-tensioned high strength trusses using alloy steel bar are widely used as glass wall supporting systems because of the high degree of transparency. The breakage of glass panes in this type of system occurs occasionally, likely to be due to error in design and analysis in addition to other factors like glass impurity and stress concentration around opening in a spider system. Most design does not consider the flexibility of supports from finite stiffness of supporting steel or reinforced concrete beams. The resistance of lateral wind pressure of the system makes use of high tension force coupled with the large deflection effect, both of which are affected by many parameters not generally considered in conventional structures. In the design, one must therefore give a careful consideration on various effects, such as support settlement due to live loads and material creep, temperature change, pre-tension force, and wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind load test chambers under a design wind speed. This paper presents a rigorous analysis and design of this type of structural systems used in a project in Hong Kong, China. The stability function with initial curvature is used in place of the cubic function, which is only accurate for linear analysis. The considerations and analysis techniques are believed to be of value to engineers involved in the design of the structural systems behaving nonlinearly.

关键词: tension system     glass wall     nonlinear analysis     pre-tensioning     second-order analysis    

Progress of three-dimensional macroporous bioactive glass for bone regeneration

Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 470-483 doi: 10.1007/s11705-012-1217-1

摘要: Bioactive glasses (BGs) are ideal materials for macroporous scaffolds due to their excellent osteoconductive, osteoinductive, biocompatible and biodegradable properties, and their high bone bonding rates. Macroporous scaffolds made from BGs are in high demand for bone regeneration because they can stimulate vascularized bone ingrowth and they enhance bonding between scaffolds and surrounding tissues. Engineering BG/biopolymers (BP) composites or hybrids may be a good way to prepare macroporous scaffolds with excellent properties. This paper summarizes the progress in the past few years in preparing three-dimensional macroporous BG and BG/BP scaffolds for bone regeneration. Since the brittleness of BGs is a major problem in developing macroporous scaffolds and this limits their use in load bearing applications, the mechanical properties of macroporous scaffolds are particularly emphasized in this review.

关键词: bioactive glass     biopolymer     bone regeneration     macroporous scaffolds     tissue engineering    

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 383-395 doi: 10.1007/s11709-010-0074-6

摘要: The single-layer cable net supported glass curtain wall has been applied in many building structures all over the world. In service, it will inevitably be subject to various damages. To study the influence of such damages on the static behavior of the single-layer cable net supported glass curtain wall, a full-scale model with the outside outline size of 4.85 m × 4.85 m and 4 × 4 grids is designed and tested. Two kinds of damages that are the cable prestress loss and cable anchorage end failure are led into the structure model during the test, and their influence has been investigated. The stiffness contribution of glass panels to the single-layer cable net supported glass curtain wall structure with or without damages and its change have been tested and analyzed. The results show that the maximum change rate of nodal deflection is 13.78% for the damage of cable prestress loss, while the change rate of nodal deflection is between 7% and 22% for the damage of cable anchorage end failure. The influence degree of the damages depends on the ratio of the structure initial stress stiffness change caused by damages to the total stiffness of the structure. The stiffness contribution of glass panels increases with the load increase. Under the same loading condition, the stiffness contribution of glass panels to the damaged structure is greater than that to the intact structure. The stiffness contribution of glass panels reduces the effect of the damages on the structural displacement and the cable tension force, but the glass panel could break if its stiffness contribution is too large.

关键词: single-layer plane cable net supported glass curtain wall     damage     cable prestress loss     cable anchorage end failure     stiffness contribution of glass panels    

Review of small aspheric glass lens molding technologies

Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 66-76 doi: 10.1007/s11465-017-0417-2

摘要:

Aspheric lens can eliminate spherical aberrations, coma, astigmatism, field distortions, and other adverse factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optical characteristics. The demand for aspheric lens has increased in recent years because of its advantageous use in the electronics industry, particularly for compact, portable devices and high-performance products. As an advanced manufacturing technology, the glass lens molding process has been recognized as a low-cost and high-efficiency manufacturing technology for machining small-diameter aspheric lens for industrial production. However, the residual stress and profile deviation of the glass lens are greatly affected by various key technologies for glass lens molding, including glass and mold-die material forming, mold-die machining, and lens molding. These key technical factors, which affect the quality of the glass lens molding process, are systematically discussed and reviewed to solve the existing technical bottlenecks and problems, as well as to predict the potential applicability of glass lens molding in the future.

关键词: aspheric glass lens     mold-die manufacturing     lens molding     molding process simulation    

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 46-65 doi: 10.1007/s11465-017-0425-2

摘要:

Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibration-assisted molding technology.

关键词: optical microstructure     microgroove     microlens     glass molding process     single-point diamond cutting    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 998-1006 doi: 10.1007/s11709-019-0533-7

摘要: This study examines the properties of fiber-reinforced reactive powder concrete (FR-RPC). Steel fibers, glass fibers, and steel-glass hybrid fibers were used to prepare the FR-RPC. The non-fibrous reactive powder concrete (NF-RPC) was prepared as a reference mix. The proportion of fibers by volume for all FR-RPC mixes was 1.5%. Steel fibers of 13 mm length and 0.2 mm diameter were used to prepare the steel fiber-reinforced RPC (SFR-RPC). Glass fibers of 13 mm length and 1.3 mm diameter were used to prepare the glass fiber-reinforced RPC (GFR-RPC). The hybrid fiber-reinforced RPC (HFR-RPC) was prepared by mixing 0.9% steel fibers and 0.6% glass fibers. Compressive strength, axial load-axial deformation behavior, modulus of elasticity, indirect tensile strength, and shear strength of the RPC mixes were investigated. The results showed that SFR-RPC achieved higher compressive strength, indirect tensile strength and shear strength than NF-RPC, GFR-RPC, and HFR-RPC. Although the compressive strengths of GFR-RPC and HFR-RPC were slightly lower than the compressive strength of NF-RPC, the shear strengths of GFR-RPC and HFR-RPC were higher than that of NF-RPC.

关键词: reactive powder concrete     steel fiber     glass fiber     hybrid fiber    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

Realization of energy-saving glass using photonic crystals

Yen-Hsiang CHEN, Li-Hung LIAO, Yu-Bin CHEN

《能源前沿(英文)》 2018年 第12卷 第1期   页码 178-184 doi: 10.1007/s11708-018-0523-9

摘要: This work successfully developed an energy-saving glass with wavelength selectivity. The glass is composed of a SiO substrate and two layers of three-dimensional photonic crystals. Each crystal is composed of identical and transparent polystyrene spheres after their self-assembling. The glass then possesses dual photonic band gaps in the near-infrared region to suppress penetration of thermal radiation. Experimental results show that the energy-saving glass decreases temperature increment in a mini-house. Moreover, the temperature after thermal equilibrium is lower than that inside a counterpart using ordinary glass.

关键词: energy-saving glass     photonic crystals     polystyrene spheres     self-assembly    

Analysis and comparison of laser cutting performance of solar float glass with different scanning modes

Wenyuan LI, Yu HUANG, Youmin RONG, Long CHEN, Guojun ZHANG, Zhangrui GAO

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 97-110 doi: 10.1007/s11465-020-0600-8

摘要: Cutting quality and efficiency have always been important indicators of glass laser cutting. Laser scanning modes have two kinds, namely, the spiral and concentric circle scanning modes. These modes can achieve high-performance hole cutting of thick solar float glass using a 532-nm nanosecond laser. The mechanism of the glass laser cutting under these two different scanning modes has been described. Several experiments are conducted to explore the effect of machining parameters on cutting efficiency and quality under these two scanning modes. Results indicate that compared with the spiral scanning mode, the minimum area of edge chipping (218340 µm ) and the minimum Ra (3.01 µm) in the concentric circle scanning mode are reduced by 9.4% and 16.4% respectively. Moreover, the best cutting efficiency scanning mode is 14.2% faster than that in the spiral scanning mode. The best parameter combination for the concentric circle scanning mode is as follows: Scanning speed: 2200 mm/s, number of inner circles: 6, and circle spacing: 0.05 mm. This parameter combination reduces the chipping area and sidewall surface roughness by 8.8% and 9.6% respectively at the same cutting efficiency compared with the best spiral processing parameters. The range of glass processing that can be achieved in the concentric circle scanning mode is wider than that in the spiral counterpart. The analyses of surface topography, white spots, microstructures, and sidewall surface element composition are also performed. The study concluded that the concentric circle scanning mode shows evident advantages in the performance of solar float glass hole cutting.

关键词: laser cutting     solar float glass     scanning mode     surface quality     cutting efficiency    

标题 作者 时间 类型 操作

Recycled glass replacement as fine aggregate in self-compacting concrete

Yasser SHARIFI, Mahmoud HOUSHIAR, Behnam AGHEBATI

期刊论文

Influence of entrainer recycle for batch heteroazeotropic distillation

Laszlo Hegely, Peter Lang

期刊论文

The impact of government incentives and penalties on willingness to recycle plastic waste: An evolutionary

Zhen Wang, Jiazhen Huo, Yongrui Duan

期刊论文

An investigation into the properties of ternary and binary cement pastes containing glass powder

Marcelo Frota BAZHUNI, Mahsa KAMALI, Ali GHAHREMANINEZHAD

期刊论文

Precision glass molding: Toward an optimal fabrication of optical lenses

Liangchi ZHANG,Weidong LIU

期刊论文

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

期刊论文

Progress of three-dimensional macroporous bioactive glass for bone regeneration

Lijun JI, Yunfeng SI, Ailing LI, Wenjun WANG, Dong QIU, Aiping ZHU

期刊论文

Influence of damages on static behavior of single-layer cable net supported glass curtain wall: full-scale

Gang SHI, Yongjiu SHI, Yuanqing WANG, Yongzhi ZUO, Xiaohao SHI, Zaoyang GUO,

期刊论文

Review of small aspheric glass lens molding technologies

Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU

期刊论文

Recent advancements in optical microstructure fabrication through glass molding process

Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

Mechanical properties of steel, glass, and hybrid fiber reinforced reactive powder concrete

Atheer H.M. ALGBURI, M. Neaz SHEIKH, Muhammad N.S. HADI

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文

Realization of energy-saving glass using photonic crystals

Yen-Hsiang CHEN, Li-Hung LIAO, Yu-Bin CHEN

期刊论文

Analysis and comparison of laser cutting performance of solar float glass with different scanning modes

Wenyuan LI, Yu HUANG, Youmin RONG, Long CHEN, Guojun ZHANG, Zhangrui GAO

期刊论文